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Images Tasks: Face Recognition
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Images Tasks: Sparse Tomography
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Images Tasks: One View Tomography with Symmetry
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Noisy Areal Density Profile (Mass Projection)




Images Tasks: Matching Experiments and Data
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Images Tasks: Material Damage assessment with X-rays

£ L.

(from M. Simon and C. Sauerwein’s paper in http://www.ndt.net/article/wcndt00/)
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Inverse Problems and Notation

e A measured image f

e A reconstructed or ideal image or density distribution u

f=utn
f=F(u)
f=Pu)
f=P(u)+n

L

Task: Find u given f

additive noise

nonlinear/stochastic transformation
measurement operator
measurement operator + noise

everything



A Probabilistic Framework = Variational Formulation

pulf) ~ p(flu)p(u)
argmax p(ulf) = argmax p(flu)p(u)

argmin{—log(p(ulf))} = argmin{—log(p(flu))—log(p(u))}
Suppose that

p(flu) ~ e IMeIP
plu) ~ eIV

argmuin{/Wu|—1—7»/\u_f|2}.

—E(u,Vu)

We arrive at:

More generally, with p(f|u) ~ e ) and p(u) ~ e , we get:

argmin {E (u, Vi) + Ap(u, f)}
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Regularizations are prior models: 7V (u) = [ |Vu|

Consider F(u) = [ |Vu|Pdx

graph of u

Fu) =7 (Ax) = 5 = dP(Ax)' 7

(p>1) F(u) o discontinuities are avoided: smooth u preferred,

(p<1) F(u) o 0 discontinuities cost nothing: step u preferred,

(p =1) F(u)=d only jump magnitude “counts”, no bias towards smooth or step.
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Getting Priors Right is Useful: Material Damage

Simple 1llustration of the power of proper priors in the case of simulated x-ray
radiographic measurement of material damage:

a) Simulated damage, b) SVD, ¢) Non-negative SVD, d) binary prior SVD.
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Metrics for Comparisons: p(f|u) = metric p(u, f)

Typical metrics are norms of differences, p(u, f) = ||u — f||. This can have unde-
sirable effects.
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We want metrics which in effect split differences nonlinearly and weight the factors
differently.
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Metrics: Splitting Differences

We want metrics which care more about some directions than others or at least
measure them differently:

e Warps: Metrics which split the differences nonlinearly and measure compo-
nents differently

e Quotients: Metrics which split the differences nonlinearly ignore one com-
ponent.



Warps: Metrics Separating Noise and Model Error components.

Idea: Warp domain to match image u and f. Use a natural stochastic term

log(p,()) to measure remaining difference.

u(x)

L O ]

p(u,f) = E(o(x)—o log(p(flu®k))))

(on green comparison region)
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Quotients: Metrics that Ignore Unimportant Differences.

e Example 1 of class 1
Example 2 of class 1

e Example 1 of class 2
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Metrics: Fluid Warping Example

SIM#1 V=0.45

Original Warped Residual

0.70

SIM#2 V=10 SIM#2 V=

2.0

SIM#2 V




Metrics: Fluid Warping Example

Various Measures of Image Differences
1 .4 T T T T T T T T

1.2  Sim#1 Wave Velocity = 0.45 -
L2 of difference

max(c) of difference

Curvature Warping Cost

Image Difference Metric

0 |
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Sim#2 Wave Velocity
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Metrics: MK Warping Example

Monge-Kantorovich Warp Distances

3

2.5

MK Distance
o

00.2 0.3 0.4 0.5 0.6 0.7

Wave Velocitv

The classic Monge-Kantorovich problem applied to image warping.
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Metrics: Classification Mod Invariance Applied to Faces

o Example 1 of class 1
Example 2 of class 1

e Example 1 of class 2

What we would like to do: factor out the orbits of transformations to which we
desire invariance.



Classification Mod Invariance: Our Novel Approach:
G262

G;0,

(F,. 6,)

©(F.0)

I
(F. 6;) Lo G o,

How we get conditional measures which approximate the quotient space met-
TiCsS.
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Classification Mod Invariance: Face Recognition Test
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Our results (the three rightmost curves) are quite good!
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Geodesics for Singular Riemannian Metrics
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Replace M — PPT MPP" + ol then let o — 0.
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Total Variation Reconstruction: LTV

In the early 1990’s Rudin, Osher and Fatemi suggested using a total variation
term for regularization of the image restoration problem.

min F(u)

in (1 / Vil 42, [ Ju— £ )

= TV(u)+Au—fl3 (2)

In addition to a large amount of intriguing and beautiful theory to be explored
this and similar functionals are big improvements on previously used methods. In
the following, we use:

min F(u /|vuy+x/|P ) fP2



Example: BCO4

The multiple view test object: a proton radiograph from one of 30 viewing an-
gles. The data was collected at the Los Alamos Neutron Science Center (LANSCE)
in the proton radiography facility. Thirty viewing angles were used to collect tomo-
graphic data.
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Example: BCO4, SVD regularized




Example: BCO4, TV regularized




Example: TVAbel

Object Radial Density Profile Noisy Areal Density Profile (Mass Projection)

Non-Regularized Abel Inversion L2-Regularized Abel Inversion
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TV-Regularized Abel Inversion Adaptive Gradient TV-Regularized Abel Inversion
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Example: TVAbel

Object Radial Density Profile Noisy Areal Density Profile (Mass Projection)
Non-Regularized Abel Inversion L2-Regularized Abel Inversion
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TV-Regularized Abel Inversion Adaptive Gradient TV-Regularized Abel Inversion
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Example: TVAbel

Object Radial Density Profile Noisy Areal Density Profile (Mass Projection)

Non-Regularized Abel Inversion L2-Regularized Abel Inversion
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TV-Regularized Abel Inversion Adaptive Gradient TV-Regularized Abel Inversion
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Geometric Analysis: L' TV

How are image analysis/processing methods really applied?

e Real, discrete, noisy data
e Approximate computations

e Convergence guessed at

Most of the time there 1s little ability to understand precisely how solutions relate
to exact solutions.

When available, non-trivial exact solutions can play a very important role in
understanding and evaluating a method.

With this in mind, we look more closely at total variation minimization: here we
have a peek at more mathematical detail and a sample result.
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Geometric Analysis: L' TV

If we replace L? fidelity with L' fidelity we get the L' total variation functional
(L'TV):

mm F(u /|Vu\+k/\u fl

mln F(u /|Vu]+k/|P

This equation is very interesting from a geometric viewpoint.

or



Geometric Analysis: L' TV

e u=7Yy — ||Vu|=perimeter of £

° u:XZ,f:XQ—>7\,f|u—f| :A.f‘XZ—Xgﬂ :kArea(ZAQ)
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Geometric Analysis: L'TV, B 2 CcQ— B 2 C X

Theorem 1. If B, C Q where r > % then B, C X.

In particular, we can conclude that the boundary of X 1s in the envelope of inside
and outside % balls.

This (plus similar results) permits us to construct nontrivial exact solutions as
well as understand non-uniqueness and the precise nature of minimizers.
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Geometric Analysis: L' TV, route to proof for Theorem 1

Comparisons: idea in a picture, using F(u) = Per(X) + AArea(X A Q)




A bit more about the team

2001 Started with a 9/11 Homeland Defense LDRD grant,
2002 Organized the 2002 LANL Image Analysis Workshop,

2002-2003: The ECA DR Proposals We eventually get 1 ER and pieces of 2 DR’’s.
Part of the original DR ECA team also gets a spinoff ER on plume detection
(Theiler, PI),

2003-present Now rapidly spinning up a virtual team with very strong (in fact
integral) external ties.

Our team, currently:

Core 7 LANL, 7 Academic Members

Associates 10-20 internal and external members, depending on how you count.
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A Sample of Our Current Projects:

PRAD reconstruction of proton radiographic data

Muon Use of background radiation to find hidden nuclear material
X-ray development of a TVAbel capability for X-ray

Invariant Recognition Ignoring differences that don’t matter
Warp Metrics ... and more generally, nonlinear splitting.

MRGA Data consulting and Geometric Analysis.

Mathematical Advances ... in all these efforts.

IPAM Organizing the 2005 IPAM graduate summer school on “Intelligent Extrac-
tion of Information from Graphs and High Dimensional Data” :
http://www.ipam.ucla.edu/programs/gss2005/

IPAM Sponsoring RIPS: http://www.ipam.ucla.edu/programs/rips2005/
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Final Example: Esedoglu’s Bar codes via TV deconvolution
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